aviscera bioscience  
line decor
  HOME  ::  
line decor
A down regulated tumor marker with tumor-suppressor function
Alternative name(s)
  • High endothelial venule protein
  • Mast9, Hevin
  • SPARC like 1

High-grade gliomas (glioblastomas) are the most common and deadly brain tumors in adults, currently with no satisfactory treatment available. Apart from de novo glioblastoma, it is currently accepted that these malignancies mainly progress from lower grade glial tumors. However, the molecular entities governing the progression of gliomas are poorly understood. Extracellular and membrane proteins are key biomolecules found at the cell-to-cell communication interface and hence are a promising proteome subpopulation that could help understand the development of glioma. Accordingly, the current study aims at identifying new protein markers of human glioma progression. For this purpose, we used glial tumors generated orthotopically with T98G and U373 human glioma cells in nude mice. This setup allowed also to discriminate the protein origin, namely, human (tumor) or mouse (host). Extracellular and membrane proteins were selectively purified using biotinylation followed by streptavidin affinity chromatography. Isolated proteins were digested and then identified and quantified employing 2D-nano-HPLC-MS/MS analysis. A total of 23 and 27 up-regulated extracellular and membrane proteins were identified in the T98G and U373 models, respectively. Approximately two-thirds of these were predominantly produced by the tumor, whereas the remaining proteins appeared to be mainly overexpressed by the host tissue. Following extensive validation, we have focused our attention on sparc-like protein 1. This protein was further investigated using immunohistochemistry in a large collection of human glioma samples of different grades. The results showed that sparc-like protein 1 expression correlates with glioma grade, suggesting the possible role for this protein in the progression of this malignancy.

Turtoi A, et al. J Proteome Res. 2012 Oct 5;11(10):5011-21. doi: 10.1021/pr3005698. Epub 2012 Sep 4.
Prostate cancer is the second leading cause of cancer death among United States men. However, disease aggressiveness is varied, with low-grade disease often being indolent and high-grade cancer accounting for the greatest density of deaths. Outcomes are also disparate among men with high-grade prostate cancer, with upwards of 65% having disease recurrence even after primary treatment. Identification of men at risk for recurrence and elucidation of the molecular processes that drive their disease is paramount, as these men are the most likely to benefit from multimodal therapy. We previously showed that androgen-induced expression profiles in prostate development are reactivated in aggressive prostate cancers. Herein, we report the down-regulation of one such gene, Sparcl1, a secreted protein, acidic and rich in cysteine (SPARC) family matricellular protein, during invasive phases of prostate development and regeneration. We further demonstrate a parallel process in prostate cancer, with decreased expression of SPARCL1 in high-grade/metastatic prostate cancer. Mechanistically, we demonstrate that SPARCL1 loss increases the migratory and invasive properties of prostate cancer cells through Ras homolog gene family, member C (RHOC), a known mediator of metastatic progression. By using models incorporating clinicopathologic parameters to predict prostate cancer recurrence after treatment, we show that SPARCL1 loss is a significant, independent prognostic marker of disease progression. Thus, SPARCL1 is a potent regulator of cell migration/invasion and its loss is independently associated with prostate cancer recurrence.
Hurley PJ et al. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14977-82
human sparcl1 elisa kit Human Soluble SPARCL1 ELISA Kit
Code No.: SK00521-01
Size: 96 T
Price: $460.00
Standard range:62.5-4000 pg/ml
Sensitivity: 10 pg/ml
Sample Type:serum, plasma
Sample require: 100 ul per well
Intra-CV: 6-8%
Inter-CV: 8-12%
Data Sheet: PDF


Price ($)


96 T